function space integral - traduction vers russe
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

function space integral - traduction vers russe

MATHEMATICAL FUNCTION
Clausen integral; Lobachevsky function; Lobachevsky's function; Clausen's integral; Clausen's function
  • 2}}(''θ'')}}

function space integral      
интеграл в функциональном пространстве
logarithmic integral         
SPECIAL FUNCTION DEFINED AS THE ANTIDERIVATIVE OF 1∕㏑(𝑥)
Offset logarithmic integral; Logarithmic integral; Log integral; Li(x); Li function; Li integral; Logarithmic Integral

математика

интегральный логарифм

logarithmic integral function         
SPECIAL FUNCTION DEFINED AS THE ANTIDERIVATIVE OF 1∕㏑(𝑥)
Offset logarithmic integral; Logarithmic integral; Log integral; Li(x); Li function; Li integral; Logarithmic Integral
интегральный логарифм

Définition

ЕВРОПЕЙСКОЕ КОСМИЧЕСКОЕ АГЕНТСТВО
(ЕКА) , международная организация 10 стран. Создана в 1975. Разрабатывает космические аппараты (КА) коммерческого и хозяйственно-прикладного назначения. ЕКА имеет сеть станций слежения за полетом космических аппаратов с центром управления в Дармштадте (Германия).

Wikipédia

Clausen function

In mathematics, the Clausen function, introduced by Thomas Clausen (1832), is a transcendental, special function of a single variable. It can variously be expressed in the form of a definite integral, a trigonometric series, and various other forms. It is intimately connected with the polylogarithm, inverse tangent integral, polygamma function, Riemann zeta function, Dirichlet eta function, and Dirichlet beta function.

The Clausen function of order 2 – often referred to as the Clausen function, despite being but one of a class of many – is given by the integral:

Cl 2 ( φ ) = 0 φ log | 2 sin x 2 | d x : {\displaystyle \operatorname {Cl} _{2}(\varphi )=-\int _{0}^{\varphi }\log \left|2\sin {\frac {x}{2}}\right|\,dx:}

In the range 0 < φ < 2 π {\displaystyle 0<\varphi <2\pi \,} the sine function inside the absolute value sign remains strictly positive, so the absolute value signs may be omitted. The Clausen function also has the Fourier series representation:

Cl 2 ( φ ) = k = 1 sin k φ k 2 = sin φ + sin 2 φ 2 2 + sin 3 φ 3 2 + sin 4 φ 4 2 + {\displaystyle \operatorname {Cl} _{2}(\varphi )=\sum _{k=1}^{\infty }{\frac {\sin k\varphi }{k^{2}}}=\sin \varphi +{\frac {\sin 2\varphi }{2^{2}}}+{\frac {\sin 3\varphi }{3^{2}}}+{\frac {\sin 4\varphi }{4^{2}}}+\cdots }

The Clausen functions, as a class of functions, feature extensively in many areas of modern mathematical research, particularly in relation to the evaluation of many classes of logarithmic and polylogarithmic integrals, both definite and indefinite. They also have numerous applications with regard to the summation of hypergeometric series, summations involving the inverse of the central binomial coefficient, sums of the polygamma function, and Dirichlet L-series.

Traduction de &#39function space integral&#39 en Russe